Nuprl Lemma : eu-between-eq-trivial-right

e:EuclideanPlane. ∀[a,b:Point].  a_b_b


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T euclidean-plane: EuclideanPlane not: ¬A implies:  Q and: P ∧ Q false: False prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  eu-point_wf euclidean-plane_wf and_wf not_wf equal_wf eu-between_wf eu-between-eq-def
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination independent_functionElimination voidElimination dependent_functionElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    a\_b\_b



Date html generated: 2016_05_18-AM-06_34_32
Last ObjectModification: 2015_12_28-AM-09_27_26

Theory : euclidean!geometry


Home Index