Nuprl Lemma : eu-length-null-segment

[e:EuclideanPlane]. ∀[a:Point].  (|aa| X ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-length: |s| all: x:A. B[x] top: Top euclidean-plane: EuclideanPlane and: P ∧ Q prop: implies:  Q uiff: uiff(P;Q) uimplies: supposing a
Lemmas referenced :  eu_seg1_mk_seg_lemma eu_seg2_mk_seg_lemma eu-extend-property eu-O_wf eu-not-colinear-OXY eu-X_wf not_wf equal_wf eu-point_wf eu-extend_wf and_wf eu-between-eq_wf eu-congruent_wf euclidean-plane_wf eu-between-eq-trivial-right eu-congruent-iff-length eu-congruence-identity eu-mk-seg_wf eu-segment_wf eu-length_wf eu-construction-unicity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality isectElimination setElimination rename productElimination dependent_set_memberEquality because_Cache lambdaFormation equalityEquality equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality independent_isectElimination independent_pairFormation applyEquality lambdaEquality setEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a:Point].    (|aa|  =  X)



Date html generated: 2016_05_18-AM-06_38_04
Last ObjectModification: 2015_12_28-AM-09_24_43

Theory : euclidean!geometry


Home Index