Nuprl Lemma : eu-length-null-segment
∀[e:EuclideanPlane]. ∀[a:Point].  (|aa| = X ∈ {p:Point| O_X_p} )
Proof
Definitions occuring in Statement : 
eu-length: |s|
, 
eu-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-X: X
, 
eu-O: O
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-length: |s|
, 
all: ∀x:A. B[x]
, 
top: Top
, 
euclidean-plane: EuclideanPlane
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
Lemmas referenced : 
eu_seg1_mk_seg_lemma, 
eu_seg2_mk_seg_lemma, 
eu-extend-property, 
eu-O_wf, 
eu-not-colinear-OXY, 
eu-X_wf, 
not_wf, 
equal_wf, 
eu-point_wf, 
eu-extend_wf, 
and_wf, 
eu-between-eq_wf, 
eu-congruent_wf, 
euclidean-plane_wf, 
eu-between-eq-trivial-right, 
eu-congruent-iff-length, 
eu-congruence-identity, 
eu-mk-seg_wf, 
eu-segment_wf, 
eu-length_wf, 
eu-construction-unicity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
productElimination, 
dependent_set_memberEquality, 
because_Cache, 
lambdaFormation, 
equalityEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
independent_isectElimination, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
setEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a:Point].    (|aa|  =  X)
Date html generated:
2016_05_18-AM-06_38_04
Last ObjectModification:
2015_12_28-AM-09_24_43
Theory : euclidean!geometry
Home
Index