Nuprl Lemma : eu-add-length-cancel-left

[e:EuclideanPlane]. ∀[x,y,z:{p:Point| O_X_p} ].  y ∈ {p:Point| O_X_p}  supposing y ∈ {p:Point| O_X_p} 


Proof




Definitions occuring in Statement :  eu-add-length: q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eu-add-length: q euclidean-plane: EuclideanPlane and: P ∧ Q not: ¬A implies:  Q all: x:A. B[x] false: False prop: cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q)
Lemmas referenced :  eu-not-colinear-OXY eu-between-eq-same2 eu-X_wf equal_wf eu-point_wf eu-O_wf eu-extend-property not_wf eu-extend_wf and_wf eu-between-eq_wf eu-congruent_wf eu-add-length_wf set_wf euclidean-plane_wf eu-construction-unicity eu-congruent-iff-length eu-mk-seg_wf eu-segment_wf eu-length_wf eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3 eu-between-eq-exchange4
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality productElimination hypothesis lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_isectElimination independent_functionElimination voidElimination dependent_set_memberEquality because_Cache equalityEquality setEquality sqequalRule isect_memberEquality axiomEquality lambdaEquality independent_pairFormation applyEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x,y,z:\{p:Point|  O\_X\_p\}  ].    x  =  y  supposing  z  +  x  =  z  +  y



Date html generated: 2016_05_18-AM-06_38_31
Last ObjectModification: 2015_12_28-AM-09_24_26

Theory : euclidean!geometry


Home Index