Nuprl Lemma : eu-add-length-cancel-left
∀[e:EuclideanPlane]. ∀[x,y,z:{p:Point| O_X_p} ].  x = y ∈ {p:Point| O_X_p}  supposing z + x = z + y ∈ {p:Point| O_X_p} 
Proof
Definitions occuring in Statement : 
eu-add-length: p + q
, 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-X: X
, 
eu-O: O
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
eu-add-length: p + q
, 
euclidean-plane: EuclideanPlane
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
Lemmas referenced : 
eu-not-colinear-OXY, 
eu-between-eq-same2, 
eu-X_wf, 
equal_wf, 
eu-point_wf, 
eu-O_wf, 
eu-extend-property, 
not_wf, 
eu-extend_wf, 
and_wf, 
eu-between-eq_wf, 
eu-congruent_wf, 
eu-add-length_wf, 
set_wf, 
euclidean-plane_wf, 
eu-construction-unicity, 
eu-congruent-iff-length, 
eu-mk-seg_wf, 
eu-segment_wf, 
eu-length_wf, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-between-eq-exchange3, 
eu-between-eq-exchange4
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
productElimination, 
hypothesis, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_set_memberEquality, 
because_Cache, 
equalityEquality, 
setEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
lambdaEquality, 
independent_pairFormation, 
applyEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x,y,z:\{p:Point|  O\_X\_p\}  ].    x  =  y  supposing  z  +  x  =  z  +  y
Date html generated:
2016_05_18-AM-06_38_31
Last ObjectModification:
2015_12_28-AM-09_24_26
Theory : euclidean!geometry
Home
Index