Nuprl Lemma : eu-add-length_wf
∀[e:EuclideanPlane]. ∀[x,y:{p:Point| O_X_p} ].  (x + y ∈ {p:Point| O_X_p} )
Proof
Definitions occuring in Statement : 
eu-add-length: p + q, 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-X: X, 
eu-O: O, 
eu-point: Point, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
eu-add-length: p + q
Lemmas referenced : 
eu-not-colinear-OXY, 
eu-between-eq-same2, 
eu-X_wf, 
equal_wf, 
eu-point_wf, 
eu-O_wf, 
set_wf, 
eu-between-eq_wf, 
euclidean-plane_wf, 
eu-extend_wf, 
not_wf, 
eu-extend-property, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-between-eq-exchange3, 
eu-between-eq-exchange4, 
and_wf, 
eu-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
productElimination, 
hypothesis, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
axiomEquality, 
lambdaEquality, 
isect_memberEquality, 
because_Cache, 
dependent_set_memberEquality, 
equalityEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x,y:\{p:Point|  O\_X\_p\}  ].    (x  +  y  \mmember{}  \{p:Point|  O\_X\_p\}  )
Date html generated:
2016_05_18-AM-06_37_51
Last ObjectModification:
2015_12_28-AM-09_25_03
Theory : euclidean!geometry
Home
Index