Nuprl Lemma : eu-add-length_wf

[e:EuclideanPlane]. ∀[x,y:{p:Point| O_X_p} ].  (x y ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-add-length: q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T euclidean-plane: EuclideanPlane and: P ∧ Q not: ¬A implies:  Q all: x:A. B[x] uimplies: supposing a false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] eu-add-length: q
Lemmas referenced :  eu-not-colinear-OXY eu-between-eq-same2 eu-X_wf equal_wf eu-point_wf eu-O_wf set_wf eu-between-eq_wf euclidean-plane_wf eu-extend_wf not_wf eu-extend-property eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3 eu-between-eq-exchange4 and_wf eu-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality productElimination hypothesis lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_isectElimination independent_functionElimination voidElimination sqequalRule axiomEquality lambdaEquality isect_memberEquality because_Cache dependent_set_memberEquality equalityEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x,y:\{p:Point|  O\_X\_p\}  ].    (x  +  y  \mmember{}  \{p:Point|  O\_X\_p\}  )



Date html generated: 2016_05_18-AM-06_37_51
Last ObjectModification: 2015_12_28-AM-09_25_03

Theory : euclidean!geometry


Home Index