Step * 1 1 1 1 of Lemma eu-between-eq-seg-eq


1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. a' Point@i
6. b' Point@i
7. c' Point@i
8. a_b_c@i
9. a'_b'_c'@i
10. ab=a'b'@i
11. ac=a'c'@i
12. |ac| |ab| |bc| ∈ {p:Point| O_X_p} 
13. |a'c'| |a'b'| |b'c'| ∈ {p:Point| O_X_p} 
14. |ab| |bc| |a'b'| |b'c'| ∈ {p:Point| O_X_p} 
15. ac=a'c'
16. |ac| |a'c'| ∈ {p:Point| O_X_p} 
17. |ab| |a'b'| ∈ {p:Point| O_X_p} 
18. ab=a'b'
⊢ bc=b'c'
BY
(InstLemma `eu-add-length-cancel-left` [⌜e⌝;⌜|bc|⌝;⌜|b'c'|⌝;⌜|ab|⌝]⋅ THENA Auto)
THEN (InstLemma `eu-congruent-iff-length` [⌜e⌝;⌜b⌝;⌜c⌝;⌜b'⌝;⌜c'⌝]⋅ THENA Auto)
THEN Auto }


Latex:


Latex:

1.  e  :  EuclideanPlane@i'
2.  a  :  Point@i
3.  b  :  Point@i
4.  c  :  Point@i
5.  a'  :  Point@i
6.  b'  :  Point@i
7.  c'  :  Point@i
8.  a\_b\_c@i
9.  a'\_b'\_c'@i
10.  ab=a'b'@i
11.  ac=a'c'@i
12.  |ac|  =  |ab|  +  |bc|
13.  |a'c'|  =  |a'b'|  +  |b'c'|
14.  |ab|  +  |bc|  =  |a'b'|  +  |b'c'|
15.  ac=a'c'
16.  |ac|  =  |a'c'|
17.  |ab|  =  |a'b'|
18.  ab=a'b'
\mvdash{}  bc=b'c'


By


Latex:
(InstLemma  `eu-add-length-cancel-left`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}|bc|\mkleeneclose{};\mkleeneopen{}|b'c'|\mkleeneclose{};\mkleeneopen{}|ab|\mkleeneclose{}]\mcdot{}  THENA  Auto)
THEN  (InstLemma  `eu-congruent-iff-length`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}b'\mkleeneclose{};\mkleeneopen{}c'\mkleeneclose{}]\mcdot{}  THENA  Auto)
THEN  Auto




Home Index