Nuprl Lemma : eu-between-eq-seg-eq
∀e:EuclideanPlane. ∀a,b,c,a',b',c':Point.  (a_b_c ⇒ a'_b'_c' ⇒ ab=a'b' ⇒ ac=a'c' ⇒ bc=b'c')
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-congruent: ab=cd, 
eu-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
euclidean-plane: EuclideanPlane, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iff_weakening_equal, 
eu-add-length_wf, 
eu-X_wf, 
eu-O_wf, 
eu-mk-seg_wf, 
eu-length_wf, 
eu-add-length-cancel-left, 
eu-congruent-iff-length, 
eu-add-length-between, 
euclidean-plane_wf, 
eu-point_wf, 
eu-between-eq_wf, 
eu-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityEquality, 
setEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,a',b',c':Point.    (a\_b\_c  {}\mRightarrow{}  a'\_b'\_c'  {}\mRightarrow{}  ab=a'b'  {}\mRightarrow{}  ac=a'c'  {}\mRightarrow{}  bc=b'c')
Date html generated:
2016_05_18-AM-06_43_49
Last ObjectModification:
2016_01_16-PM-10_29_04
Theory : euclidean!geometry
Home
Index