Step
*
3
of Lemma
eu-colinear-cons
1. e : EuclideanPlane
2. L : Point List
3. A : Point
4. (∀A∈L.(∀B∈L.(∀C∈L.(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C))))
5. (∀B∈L.(∀C∈L.(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C)))
⊢ (∀B∈[A / L].(∀C∈[A / L].(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C)))
BY
{ (RWO "l_all_cons" 0 THEN Auto) }
1
1. e : EuclideanPlane
2. L : Point List
3. A : Point
4. (∀A∈L.(∀B∈L.(∀C∈L.(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C))))
5. (∀B∈L.(∀C∈L.(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C)))
⊢ (∀C∈[A / L].(¬(A = A ∈ Point)) 
⇒ Colinear(A;A;C))
2
1. e : EuclideanPlane
2. L : Point List
3. A : Point
4. (∀A∈L.(∀B∈L.(∀C∈L.(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C))))
5. (∀B∈L.(∀C∈L.(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C)))
6. (∀C∈[A / L].(¬(A = A ∈ Point)) 
⇒ Colinear(A;A;C))
⊢ (∀B∈L.(∀C∈[A / L].(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C)))
Latex:
Latex:
1.  e  :  EuclideanPlane
2.  L  :  Point  List
3.  A  :  Point
4.  (\mforall{}A\mmember{}L.(\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.(\mneg{}(A  =  B))  {}\mRightarrow{}  Colinear(A;B;C))))
5.  (\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.(\mneg{}(A  =  B))  {}\mRightarrow{}  Colinear(A;B;C)))
\mvdash{}  (\mforall{}B\mmember{}[A  /  L].(\mforall{}C\mmember{}[A  /  L].(\mneg{}(A  =  B))  {}\mRightarrow{}  Colinear(A;B;C)))
By
Latex:
(RWO  "l\_all\_cons"  0  THEN  Auto)
Home
Index