Nuprl Lemma : eu-colinear-cons

e:EuclideanPlane. ∀L:Point List. ∀A:Point.
  (eu-colinear-set(e;[A L]) ⇐⇒ eu-colinear-set(e;L) ∧ (∀B∈L.(∀C∈L.(¬(A B ∈ Point))  Colinear(A;B;C))))


Proof




Definitions occuring in Statement :  eu-colinear-set: eu-colinear-set(e;L) euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point l_all: (∀x∈L.P[x]) cons: [a b] list: List all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] eu-colinear-set: eu-colinear-set(e;L) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T} cand: c∧ B not: ¬A false: False stable: Stable{P} uimplies: supposing a or: P ∨ Q
Lemmas referenced :  l_all_wf2 eu-point_wf cons_wf l_member_wf not_wf equal_wf eu-colinear_wf l_all_cons iff_wf list_wf euclidean-plane_wf l_all_functionality l_all_iff eu-colinear-def member_wf eu-between_wf all_wf eu-colinear-swap stable__colinear false_wf or_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle eu-colinear-permute
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation sqequalHypSubstitution productElimination thin productEquality introduction extract_by_obid isectElimination setElimination rename because_Cache hypothesis hypothesisEquality sqequalRule lambdaEquality functionEquality setEquality dependent_functionElimination addLevel impliesFunctionality independent_functionElimination promote_hyp voidElimination allFunctionality levelHypothesis equalitySymmetry independent_isectElimination unionElimination hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}L:Point  List.  \mforall{}A:Point.
    (eu-colinear-set(e;[A  /  L])
    \mLeftarrow{}{}\mRightarrow{}  eu-colinear-set(e;L)  \mwedge{}  (\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.(\mneg{}(A  =  B))  {}\mRightarrow{}  Colinear(A;B;C))))



Date html generated: 2016_10_26-AM-07_43_45
Last ObjectModification: 2016_07_12-AM-08_11_02

Theory : euclidean!geometry


Home Index