Nuprl Lemma : eu-colinear-cons
∀e:EuclideanPlane. ∀L:Point List. ∀A:Point.
  (eu-colinear-set(e;[A / L]) 
⇐⇒ eu-colinear-set(e;L) ∧ (∀B∈L.(∀C∈L.(¬(A = B ∈ Point)) 
⇒ Colinear(A;B;C))))
Proof
Definitions occuring in Statement : 
eu-colinear-set: eu-colinear-set(e;L)
, 
euclidean-plane: EuclideanPlane
, 
eu-colinear: Colinear(a;b;c)
, 
eu-point: Point
, 
l_all: (∀x∈L.P[x])
, 
cons: [a / b]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
eu-colinear-set: eu-colinear-set(e;L)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
or: P ∨ Q
Lemmas referenced : 
l_all_wf2, 
eu-point_wf, 
cons_wf, 
l_member_wf, 
not_wf, 
equal_wf, 
eu-colinear_wf, 
l_all_cons, 
iff_wf, 
list_wf, 
euclidean-plane_wf, 
l_all_functionality, 
l_all_iff, 
eu-colinear-def, 
member_wf, 
eu-between_wf, 
all_wf, 
eu-colinear-swap, 
stable__colinear, 
false_wf, 
or_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
eu-colinear-permute
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setEquality, 
dependent_functionElimination, 
addLevel, 
impliesFunctionality, 
independent_functionElimination, 
promote_hyp, 
voidElimination, 
allFunctionality, 
levelHypothesis, 
equalitySymmetry, 
independent_isectElimination, 
unionElimination, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}L:Point  List.  \mforall{}A:Point.
    (eu-colinear-set(e;[A  /  L])
    \mLeftarrow{}{}\mRightarrow{}  eu-colinear-set(e;L)  \mwedge{}  (\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.(\mneg{}(A  =  B))  {}\mRightarrow{}  Colinear(A;B;C))))
Date html generated:
2016_10_26-AM-07_43_45
Last ObjectModification:
2016_07_12-AM-08_11_02
Theory : euclidean!geometry
Home
Index