Nuprl Lemma : eu-colinear-def

e:EuclideanStructure
  ∀[a,b,c:Point].
    (Colinear(a;b;c)
    ⇐⇒ (a b ∈ Point)) ∧ ((¬(c a ∈ Point)) ∧ (c b ∈ Point)) ∧ c-a-b) ∧ a-c-b) ∧ a-b-c))))


Proof




Definitions occuring in Statement :  eu-colinear: Colinear(a;b;c) eu-between: a-b-c eu-point: Point euclidean-structure: EuclideanStructure uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] euclidean-structure: EuclideanStructure record+: record+ member: t ∈ T record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} prop: spreadn: spread3 and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q uimplies: supposing a eu-point: Point eu-between: a-b-c eu-colinear: Colinear(a;b;c)
Lemmas referenced :  subtype_rel_self not_wf equal_wf uall_wf iff_wf and_wf isect_wf eu-point_wf euclidean-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin cut hypothesis applyEquality tokenEquality instantiate lemma_by_obid isectElimination universeEquality functionEquality equalityTransitivity equalitySymmetry lambdaEquality cumulativity hypothesisEquality because_Cache setEquality productEquality productElimination setElimination rename introduction

Latex:
\mforall{}e:EuclideanStructure
    \mforall{}[a,b,c:Point].
        (Colinear(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}(a  =  b))  \mwedge{}  (\mneg{}((\mneg{}(c  =  a))  \mwedge{}  (\mneg{}(c  =  b))  \mwedge{}  (\mneg{}c-a-b)  \mwedge{}  (\mneg{}a-c-b)  \mwedge{}  (\mneg{}a-b-c))))



Date html generated: 2016_05_18-AM-06_32_43
Last ObjectModification: 2015_12_28-AM-09_28_28

Theory : euclidean!geometry


Home Index