Step
*
1
1
of Lemma
eu-fsc-ap
1. e : EuclideanPlane@i'
2. a : Point@i
3. b : Point@i
4. c : Point@i
5. d : Point@i
6. a' : Point@i
7. b' : Point@i
8. c' : Point@i
9. d' : Point@i
10. Colinear(a;b;c) ∧ Cong3(abc,a'b'c') ∧ ad=a'd' ∧ bd=b'd'@i
11. ¬(a = b ∈ Point)@i
⊢ cd=c'd'
BY
{ (InstLemma `eu-colinear-five-segment` [⌜e⌝;⌜a⌝;⌜b⌝;⌜c⌝;⌜d⌝;⌜a'⌝;⌜b'⌝;⌜c'⌝;⌜d'⌝]⋅ THENA Auto) }
1
1. e : EuclideanPlane@i'
2. a : Point@i
3. b : Point@i
4. c : Point@i
5. d : Point@i
6. a' : Point@i
7. b' : Point@i
8. c' : Point@i
9. d' : Point@i
10. Colinear(a;b;c)@i
11. Cong3(abc,a'b'c')@i
12. ad=a'd'@i
13. bd=b'd'@i
14. ¬(a = b ∈ Point)@i
⊢ ac=a'c'
2
1. e : EuclideanPlane@i'
2. a : Point@i
3. b : Point@i
4. c : Point@i
5. d : Point@i
6. a' : Point@i
7. b' : Point@i
8. c' : Point@i
9. d' : Point@i
10. Colinear(a;b;c) ∧ Cong3(abc,a'b'c') ∧ ad=a'd' ∧ bd=b'd'@i
11. ¬(a = b ∈ Point)@i
12. cd=c'd'
⊢ cd=c'd'
Latex:
Latex:
1.  e  :  EuclideanPlane@i'
2.  a  :  Point@i
3.  b  :  Point@i
4.  c  :  Point@i
5.  d  :  Point@i
6.  a'  :  Point@i
7.  b'  :  Point@i
8.  c'  :  Point@i
9.  d'  :  Point@i
10.  Colinear(a;b;c)  \mwedge{}  Cong3(abc,a'b'c')  \mwedge{}  ad=a'd'  \mwedge{}  bd=b'd'@i
11.  \mneg{}(a  =  b)@i
\mvdash{}  cd=c'd'
By
Latex:
(InstLemma  `eu-colinear-five-segment`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}a'\mkleeneclose{};\mkleeneopen{}b'\mkleeneclose{};\mkleeneopen{}c'\mkleeneclose{};\mkleeneopen{}d'\mkleeneclose{}]\mcdot{}  THENA  Auto)
Home
Index