Nuprl Lemma : eu-fsc-ap

e:EuclideanPlane. ∀a,b,c,d,a',b',c',d':Point.  (FSC(a;b;c;d  a';b';c';d')  (a b ∈ Point))  cd=c'd')


Proof




Definitions occuring in Statement :  eu-five-seg-compressed: FSC(a;b;c;d  a';b';c';d') euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane eu-five-seg-compressed: FSC(a;b;c;d  a';b';c';d') uimplies: supposing a and: P ∧ Q eu-cong-tri: Cong3(abc,a'b'c') uiff: uiff(P;Q)
Lemmas referenced :  not_wf equal_wf eu-point_wf eu-five-seg-compressed_wf euclidean-plane_wf eu-colinear-five-segment eu-congruent-iff-length eu-length-flip
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination independent_isectElimination productElimination because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,a',b',c',d':Point.    (FSC(a;b;c;d    a';b';c';d')  {}\mRightarrow{}  (\mneg{}(a  =  b))  {}\mRightarrow{}  cd=c'd')



Date html generated: 2016_05_18-AM-06_42_14
Last ObjectModification: 2015_12_28-AM-09_22_42

Theory : euclidean!geometry


Home Index