Nuprl Lemma : eu-fsc-ap
∀e:EuclideanPlane. ∀a,b,c,d,a',b',c',d':Point.  (FSC(a;b;c;d  a';b';c';d') 
⇒ (¬(a = b ∈ Point)) 
⇒ cd=c'd')
Proof
Definitions occuring in Statement : 
eu-five-seg-compressed: FSC(a;b;c;d  a';b';c';d')
, 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
eu-five-seg-compressed: FSC(a;b;c;d  a';b';c';d')
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
eu-cong-tri: Cong3(abc,a'b'c')
, 
uiff: uiff(P;Q)
Lemmas referenced : 
not_wf, 
equal_wf, 
eu-point_wf, 
eu-five-seg-compressed_wf, 
euclidean-plane_wf, 
eu-colinear-five-segment, 
eu-congruent-iff-length, 
eu-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,a',b',c',d':Point.    (FSC(a;b;c;d    a';b';c';d')  {}\mRightarrow{}  (\mneg{}(a  =  b))  {}\mRightarrow{}  cd=c'd')
Date html generated:
2016_05_18-AM-06_42_14
Last ObjectModification:
2015_12_28-AM-09_22_42
Theory : euclidean!geometry
Home
Index