Step * 2 of Lemma eu-sum-eq-x


1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. Point@i
6. |ab| |cd| ∈ {p:Point| O_X_p} @i
⊢ d ∈ Point
BY
Assert ⌜|cd| ≤ X⌝⋅
THEN Auto }

1
.....assertion..... 
1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. Point@i
6. |ab| |cd| ∈ {p:Point| O_X_p} @i
⊢ |cd| ≤ X

2
1. EuclideanPlane@i'
2. Point@i
3. Point@i
4. Point@i
5. Point@i
6. |ab| |cd| ∈ {p:Point| O_X_p} @i
7. |cd| ≤ X
⊢ d ∈ Point


Latex:


Latex:

1.  e  :  EuclideanPlane@i'
2.  a  :  Point@i
3.  b  :  Point@i
4.  c  :  Point@i
5.  d  :  Point@i
6.  X  =  |ab|  +  |cd|@i
\mvdash{}  c  =  d


By


Latex:
Assert  \mkleeneopen{}|cd|  \mleq{}  X\mkleeneclose{}\mcdot{}
THEN  Auto




Home Index