Nuprl Lemma : eu-sum-eq-x

e:EuclideanPlane. ∀a,b,c,d:Point.  ((X |ab| |cd| ∈ {p:Point| O_X_p}  ((a b ∈ Point) ∧ (c d ∈ Point)))


Proof




Definitions occuring in Statement :  eu-add-length: q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q)
Lemmas referenced :  eu-add-length-comm eu-eq-x-implies-eq eu-length-null-segment eu-le-null-segment eu-le-add1 iff_weakening_equal true_wf squash_wf eu-le_wf euclidean-plane_wf eu-mk-seg_wf eu-length_wf eu-add-length_wf eu-between-eq-trivial-right eu-X_wf eu-O_wf eu-between-eq_wf eu-point_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality setElimination rename hypothesisEquality hypothesis because_Cache dependent_functionElimination dependent_set_memberEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination equalityEquality equalityUniverse levelHypothesis

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    ((X  =  |ab|  +  |cd|)  {}\mRightarrow{}  ((a  =  b)  \mwedge{}  (c  =  d)))



Date html generated: 2016_05_18-AM-06_44_08
Last ObjectModification: 2016_01_16-PM-10_28_59

Theory : euclidean!geometry


Home Index