Nuprl Lemma : eu-eq-x-implies-eq
∀e:EuclideanPlane. ∀a,b:Point.  ((X = |ab| ∈ {p:Point| O_X_p} ) 
⇒ (a = b ∈ Point))
Proof
Definitions occuring in Statement : 
eu-length: |s|
, 
eu-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-X: X
, 
eu-O: O
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
eu-length: |s|
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
top: Top
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
eu-segment_wf, 
and_wf, 
euclidean-structure_wf, 
true_wf, 
squash_wf, 
eu-congruent-iff-length, 
eu_seg1_mk_seg_lemma, 
eu_seg2_mk_seg_lemma, 
eu-congruence-identity-sym, 
eu-not-colinear-OXY, 
eu-seg2_wf, 
eu-seg1_wf, 
eu-extend-equal-iff-congruent, 
iff_weakening_equal, 
eu-length-null-segment, 
euclidean-plane_wf, 
eu-mk-seg_wf, 
eu-length_wf, 
eu-between-eq-trivial-right, 
eu-X_wf, 
eu-O_wf, 
eu-between-eq_wf, 
eu-point_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
dependent_set_memberEquality, 
equalityEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    ((X  =  |ab|)  {}\mRightarrow{}  (a  =  b))
Date html generated:
2016_05_18-AM-06_44_00
Last ObjectModification:
2016_01_16-PM-10_28_53
Theory : euclidean!geometry
Home
Index