Nuprl Lemma : eu-eq-x-implies-eq

e:EuclideanPlane. ∀a,b:Point.  ((X |ab| ∈ {p:Point| O_X_p}  (a b ∈ Point))


Proof




Definitions occuring in Statement :  eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point all: x:A. B[x] implies:  Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane eu-length: |s| subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) top: Top squash: T true: True
Lemmas referenced :  eu-segment_wf and_wf euclidean-structure_wf true_wf squash_wf eu-congruent-iff-length eu_seg1_mk_seg_lemma eu_seg2_mk_seg_lemma eu-congruence-identity-sym eu-not-colinear-OXY eu-seg2_wf eu-seg1_wf eu-extend-equal-iff-congruent iff_weakening_equal eu-length-null-segment euclidean-plane_wf eu-mk-seg_wf eu-length_wf eu-between-eq-trivial-right eu-X_wf eu-O_wf eu-between-eq_wf eu-point_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality setElimination rename hypothesisEquality because_Cache dependent_functionElimination dependent_set_memberEquality equalityEquality applyEquality lambdaEquality sqequalRule equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination natural_numberEquality imageMemberEquality baseClosed independent_pairFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    ((X  =  |ab|)  {}\mRightarrow{}  (a  =  b))



Date html generated: 2016_05_18-AM-06_44_00
Last ObjectModification: 2016_01_16-PM-10_28_53

Theory : euclidean!geometry


Home Index