Nuprl Lemma : eu-le-null-segment

e:EuclideanPlane. ∀[p:{p:Point| O_X_p} ]. ∀[a:Point].  uiff(p ≤ |aa|;p |aa| ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-le: p ≤ q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T euclidean-plane: EuclideanPlane prop: so_lambda: λ2x.t[x] so_apply: x[s] true: True uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q rev_implies:  Q eu-le: p ≤ q sq_stable: SqStable(P)
Lemmas referenced :  eu-point_wf set_wf eu-between-eq_wf eu-O_wf eu-X_wf euclidean-plane_wf eu-le_wf eu-length_wf eu-mk-seg_wf uiff_wf eu-between-eq-trivial-right equal_wf squash_wf true_wf eu-length-null-segment iff_weakening_equal eu-between-eq-same sq_stable__eu-between-eq eu-between-eq-trivial-left
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache dependent_functionElimination natural_numberEquality cumulativity dependent_set_memberEquality equalityEquality setEquality productElimination addLevel independent_pairFormation independent_isectElimination applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality independent_functionElimination axiomEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[p:\{p:Point|  O\_X\_p\}  ].  \mforall{}[a:Point].    uiff(p  \mleq{}  |aa|;p  =  |aa|)



Date html generated: 2016_10_26-AM-07_42_03
Last ObjectModification: 2016_07_12-AM-08_08_20

Theory : euclidean!geometry


Home Index