Nuprl Lemma : eu-le_wf

[e:EuclideanPlane]. ∀[p,q:{p:Point| O_X_p} ].  (p ≤ q ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-le: p ≤ q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-le: p ≤ q euclidean-plane: EuclideanPlane all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eu-between-eq_wf eu-X_wf set_wf eu-point_wf eu-O_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry lambdaEquality isect_memberEquality because_Cache

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,q:\{p:Point|  O\_X\_p\}  ].    (p  \mleq{}  q  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_37_20
Last ObjectModification: 2015_12_28-AM-09_25_06

Theory : euclidean!geometry


Home Index