Nuprl Lemma : eu-le_wf
∀[e:EuclideanPlane]. ∀[p,q:{p:Point| O_X_p} ].  (p ≤ q ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-le: p ≤ q
, 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-X: X
, 
eu-O: O
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-le: p ≤ q
, 
euclidean-plane: EuclideanPlane
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
eu-between-eq_wf, 
eu-X_wf, 
set_wf, 
eu-point_wf, 
eu-O_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,q:\{p:Point|  O\_X\_p\}  ].    (p  \mleq{}  q  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_37_20
Last ObjectModification:
2015_12_28-AM-09_25_06
Theory : euclidean!geometry
Home
Index