Nuprl Lemma : eu-le-add1
∀e:EuclideanPlane. ∀[p,q:{p:Point| O_X_p} ].  p ≤ p + q
Proof
Definitions occuring in Statement : 
eu-add-length: p + q, 
eu-le: p ≤ q, 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-X: X, 
eu-O: O, 
eu-point: Point, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
eu-add-length: p + q, 
eu-le: p ≤ q, 
member: t ∈ T, 
prop: ℙ, 
euclidean-plane: EuclideanPlane, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
sq_stable: SqStable(P), 
squash: ↓T
Lemmas referenced : 
set_wf, 
eu-point_wf, 
eu-between-eq_wf, 
eu-O_wf, 
eu-X_wf, 
euclidean-plane_wf, 
eu-not-colinear-OXY, 
sq_stable__eu-between-eq, 
eu-extend_wf, 
subtype_rel_sets, 
not_wf, 
equal_wf, 
eu-between-eq-same, 
eu-extend-property, 
eu-congruent_wf, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-between-eq-exchange3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
applyEquality, 
independent_isectElimination, 
setEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
equalityTransitivity, 
independent_functionElimination, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
productEquality, 
equalityEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[p,q:\{p:Point|  O\_X\_p\}  ].    p  \mleq{}  p  +  q
Date html generated:
2016_10_26-AM-07_42_16
Last ObjectModification:
2016_07_12-AM-08_08_35
Theory : euclidean!geometry
Home
Index