Nuprl Lemma : eu-le-add1

e:EuclideanPlane. ∀[p,q:{p:Point| O_X_p} ].  p ≤ q


Proof




Definitions occuring in Statement :  eu-add-length: q eu-le: p ≤ q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] eu-add-length: q eu-le: p ≤ q member: t ∈ T prop: euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a implies:  Q not: ¬A false: False sq_stable: SqStable(P) squash: T
Lemmas referenced :  set_wf eu-point_wf eu-between-eq_wf eu-O_wf eu-X_wf euclidean-plane_wf eu-not-colinear-OXY sq_stable__eu-between-eq eu-extend_wf subtype_rel_sets not_wf equal_wf eu-between-eq-same eu-extend-property eu-congruent_wf eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache dependent_functionElimination productElimination applyEquality independent_isectElimination setEquality equalitySymmetry hyp_replacement Error :applyLambdaEquality,  equalityTransitivity independent_functionElimination voidElimination imageMemberEquality baseClosed imageElimination dependent_set_memberEquality productEquality equalityEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[p,q:\{p:Point|  O\_X\_p\}  ].    p  \mleq{}  p  +  q



Date html generated: 2016_10_26-AM-07_42_16
Last ObjectModification: 2016_07_12-AM-08_08_35

Theory : euclidean!geometry


Home Index