Nuprl Lemma : 2opp-side-implies-same-side
∀e:BasicGeometry. ∀a,c,d,p,q:Point.
  (((geo-tar-opp-side(e;a;d;p;q) ∧ geo-tar-opp-side(e;c;d;p;q)) ∧ a ≠ c) 
⇒ geo-tar-same-side(e;a;c;p;q))
Proof
Definitions occuring in Statement : 
geo-tar-same-side: geo-tar-same-side(e;a;b;p;q)
, 
geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q)
, 
basic-geometry: BasicGeometry
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
geo-tar-same-side: geo-tar-same-side(e;a;b;p;q)
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-sep_wf, 
geo-tar-opp-side_wf
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
dependent_pairFormation
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,c,d,p,q:Point.
    (((geo-tar-opp-side(e;a;d;p;q)  \mwedge{}  geo-tar-opp-side(e;c;d;p;q))  \mwedge{}  a  \mneq{}  c)
    {}\mRightarrow{}  geo-tar-same-side(e;a;c;p;q))
Date html generated:
2017_10_02-PM-06_23_31
Last ObjectModification:
2017_08_05-PM-04_17_40
Theory : euclidean!plane!geometry
Home
Index