Step
*
1
1
of Lemma
Euclid-Prop2-lemma
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. a # b
5. v : Point
6. c : Point
7. cb ≅ ab
8. ca ≅ ba
9. ca ≅ cb
10. c leftof ab
11. y : Point
12. B(cby)
13. by ≅ bv
14. v1 : Point
15. cv1 ≅ cy
16. B(acv1)
17. c # y
⇒ c # v1
18. x : Point
19. cx ≅ cy
20. B(xcv1)
21. Colinear(a;c;x)
22. c # y
⇒ x # v1
⊢ ax ≅ bv
BY
{ (InstLemma `geo-inner-three-segment` [⌜e⌝;⌜x⌝;⌜a⌝;⌜c⌝;⌜y⌝;⌜b⌝;⌜c⌝]⋅ THENA EAuto 1) }
1
.....antecedent.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. a # b
5. v : Point
6. c : Point
7. cb ≅ ab
8. ca ≅ ba
9. ca ≅ cb
10. c leftof ab
11. y : Point
12. B(cby)
13. by ≅ bv
14. v1 : Point
15. cv1 ≅ cy
16. B(acv1)
17. c # y
⇒ c # v1
18. x : Point
19. cx ≅ cy
20. B(xcv1)
21. Colinear(a;c;x)
22. c # y
⇒ x # v1
⊢ B(xac)
2
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. a # b
5. v : Point
6. c : Point
7. cb ≅ ab
8. ca ≅ ba
9. ca ≅ cb
10. c leftof ab
11. y : Point
12. B(cby)
13. by ≅ bv
14. v1 : Point
15. cv1 ≅ cy
16. B(acv1)
17. c # y
⇒ c # v1
18. x : Point
19. cx ≅ cy
20. B(xcv1)
21. Colinear(a;c;x)
22. c # y
⇒ x # v1
23. xa ≅ yb
⊢ ax ≅ bv
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. a \# b
5. v : Point
6. c : Point
7. cb \mcong{} ab
8. ca \mcong{} ba
9. ca \mcong{} cb
10. c leftof ab
11. y : Point
12. B(cby)
13. by \mcong{} bv
14. v1 : Point
15. cv1 \mcong{} cy
16. B(acv1)
17. c \# y {}\mRightarrow{} c \# v1
18. x : Point
19. cx \mcong{} cy
20. B(xcv1)
21. Colinear(a;c;x)
22. c \# y {}\mRightarrow{} x \# v1
\mvdash{} ax \mcong{} bv
By
Latex:
(InstLemma `geo-inner-three-segment` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THENA EAuto 1)
Home
Index