Step
*
1
3
of Lemma
Euclid-Prop9-with-between
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. c # ba
6. x : Point
7. c_a_x
8. ax ≅ cb
9. y : Point
10. c_b_y
11. by ≅ ca
12. cx ≅ cy
13. c # bx
14. c # yx
15. d : Point
16. x-d-y
17. xd ≅ dy
18. ∃x':Point. (((a-x'-b ∧ out(c dx')) ∧ xcd ≅a acx') ∧ ycd ≅a bcx')
⊢ ∃f:Point. (acf ≅a bcf ∧ a-f-b)
BY
{ ((ExRepD THEN D 0 With ⌜x'⌝  THEN Auto)
   THEN (InstLemma `geo-cong-angle-transitivity` [⌜e⌝;⌜a⌝;⌜c⌝;⌜x'⌝;⌜x⌝;⌜c⌝;⌜d⌝;⌜b⌝;⌜c⌝;⌜x'⌝]⋅ THEN EAuto 1)
   THEN InstLemma `geo-cong-angle-transitivity` [⌜e⌝;⌜x⌝;⌜c⌝;⌜d⌝;⌜y⌝;⌜c⌝;⌜d⌝;⌜b⌝;⌜c⌝;⌜x'⌝]⋅
   THEN EAuto 1) }
Latex:
Latex:
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  c  \#  ba
6.  x  :  Point
7.  c\_a\_x
8.  ax  \mcong{}  cb
9.  y  :  Point
10.  c\_b\_y
11.  by  \mcong{}  ca
12.  cx  \mcong{}  cy
13.  c  \#  bx
14.  c  \#  yx
15.  d  :  Point
16.  x-d-y
17.  xd  \mcong{}  dy
18.  \mexists{}x':Point.  (((a-x'-b  \mwedge{}  out(c  dx'))  \mwedge{}  xcd  \mcong{}\msuba{}  acx')  \mwedge{}  ycd  \mcong{}\msuba{}  bcx')
\mvdash{}  \mexists{}f:Point.  (acf  \mcong{}\msuba{}  bcf  \mwedge{}  a-f-b)
By
Latex:
((ExRepD  THEN  D  0  With  \mkleeneopen{}x'\mkleeneclose{}    THEN  Auto)
  THEN  (InstLemma  `geo-cong-angle-transitivity`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}x'\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}x'\mkleeneclose{}]\mcdot{}
              THEN  EAuto  1
              )
  THEN  InstLemma  `geo-cong-angle-transitivity`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}x'\mkleeneclose{}]\mcdot{}
  THEN  EAuto  1)
Home
Index