Nuprl Lemma : Euclid-Prop9-with-between

e:EuclideanPlane. ∀a,b:Point. ∀c:{c:Point| ba} .  ∃f:Point. (acf ≅a bcf ∧ a-f-b)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q squash: T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: and: P ∧ Q exists: x:A. B[x] basic-geometry: BasicGeometry uiff: uiff(P;Q) true: True cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m sq_exists: x:A [B[x]] geo-out: out(p ab)
Lemmas referenced :  sq_stable__geo-lsep geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf lsep-implies-sep geo-extend-exists geo-congruent-iff-length geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm colinear-lsep-cycle lsep-all-sym geo-sep-sym geo-between-sep geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than Euclid-Prop10 geo-sep_wf sq_stable__and geo-strict-between_wf geo-congruent_wf sq_stable__geo-strict-between sq_stable__geo-congruent geo-out-interior-point-exists lsep-symmetry geo-between-out euclidean-plane-axioms geo-out_inversion geo-cong-angle_wf geo-cong-angle-symm2 cong-tri-implies-cong-angle2 geo-length-flip geo-length_wf geo-mk-seg_wf geo-cong-angle-transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut setElimination thin rename introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination setIsType inhabitedIsType universeIsType isectElimination applyEquality instantiate independent_isectElimination because_Cache productElimination lambdaEquality_alt equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt productIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ba\}  .    \mexists{}f:Point.  (acf  \mcong{}\msuba{}  bcf  \mwedge{}  a-f-b)



Date html generated: 2019_10_16-PM-02_18_53
Last ObjectModification: 2019_01_09-AM-11_08_24

Theory : euclidean!plane!geometry


Home Index