Nuprl Lemma : Euclid-Prop10

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃d:{Point| (a-d-b ∧ ad ≅ db)})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sq_exists: x:{A| B[x]} and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] geo-midpoint: a=m=b geo-strict-between: a-b-c implies:  Q euclidean-plane: EuclideanPlane or: P ∨ Q
Lemmas referenced :  Euclid-midpoint geo-strict-between_wf geo-congruent_wf set_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-congruent-symmetry geo-congruent-sep geo-sep-or geo-sep-sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality independent_pairFormation hypothesis productEquality isectElimination applyEquality because_Cache sqequalRule instantiate independent_isectElimination lambdaEquality productElimination independent_functionElimination unionElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (\mexists{}d:\{Point|  (a-d-b  \mwedge{}  ad  \00D0  db)\})



Date html generated: 2017_10_02-PM-06_55_11
Last ObjectModification: 2017_08_16-AM-00_59_52

Theory : euclidean!plane!geometry


Home Index