Nuprl Lemma : Euclid-midpoint
∀e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃d:{Point| a=d=b})
Proof
Definitions occuring in Statement : 
geo-midpoint: a=m=b
, 
euclidean-plane: EuclideanPlane
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
sq_exists: ∃x:{A| B[x]}
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
midpoint-construction_wf, 
geo-sep_wf, 
set_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
lambdaEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (\mexists{}d:\{Point|  a=d=b\})
Date html generated:
2017_10_02-PM-06_54_54
Last ObjectModification:
2017_08_14-AM-00_33_03
Theory : euclidean!plane!geometry
Home
Index