Nuprl Lemma : Euclid-midpoint

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃d:{Point| a=d=b})


Proof




Definitions occuring in Statement :  geo-midpoint: a=m=b euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: sq_exists: x:{A| B[x]} guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  midpoint-construction_wf geo-sep_wf set_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality hypothesis isectElimination applyEquality because_Cache sqequalRule instantiate independent_isectElimination lambdaEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (\mexists{}d:\{Point|  a=d=b\})



Date html generated: 2017_10_02-PM-06_54_54
Last ObjectModification: 2017_08_14-AM-00_33_03

Theory : euclidean!plane!geometry


Home Index