Nuprl Lemma : midpoint-construction_wf
∀e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (Mid(a;b) ∈ {d:Point| a=d=b} )
Proof
Definitions occuring in Statement : 
midpoint-construction: Mid(a;b)
, 
euclidean-plane: EuclideanPlane
, 
geo-midpoint: a=m=b
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sq_exists: ∃x:A [B[x]]
, 
Euclid-midpoint-1, 
geo-CC-2, 
use-plane-sep, 
sq_stable__and, 
geo-SS: geo-SS(g;a;b;u;v)
, 
record-select: r.x
, 
midpoint-construction: Mid(a;b)
, 
geo-CC: CC(a;b;c;d)
, 
geo-CCR: geo-CCR(g;a;b;c;d)
, 
geo-CCL: CCL(a;b;c;d)
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
set_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
Euclid-midpoint-1, 
subtype_rel_self, 
all_wf, 
sq_exists_wf, 
geo-midpoint_wf, 
geo-CC-2, 
use-plane-sep, 
sq_stable__and
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
setEquality, 
setElimination, 
rename
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (Mid(a;b)  \mmember{}  \{d:Point|  a=d=b\}  )
Date html generated:
2018_05_22-PM-00_08_02
Last ObjectModification:
2018_03_30-AM-10_58_03
Theory : euclidean!plane!geometry
Home
Index