Nuprl Lemma : midpoint-construction_wf

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (Mid(a;b) ∈ {d:Point| a=d=b} )


Proof




Definitions occuring in Statement :  midpoint-construction: Mid(a;b) euclidean-plane: EuclideanPlane geo-midpoint: a=m=b geo-sep: a ≠ b geo-point: Point all: x:A. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sq_exists: x:A [B[x]] Euclid-midpoint-1 geo-CC-2 use-plane-sep sq_stable__and geo-SS: geo-SS(g;a;b;u;v) record-select: r.x midpoint-construction: Mid(a;b) geo-CC: CC(a;b;c;d) geo-CCR: geo-CCR(g;a;b;c;d) geo-CCL: CCL(a;b;c;d) prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  set_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf Euclid-midpoint-1 subtype_rel_self all_wf sq_exists_wf geo-midpoint_wf geo-CC-2 use-plane-sep sq_stable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule sqequalHypSubstitution hypothesis introduction extract_by_obid isectElimination thin hypothesisEquality applyEquality instantiate independent_isectElimination lambdaEquality because_Cache functionEquality cumulativity setEquality setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (Mid(a;b)  \mmember{}  \{d:Point|  a=d=b\}  )



Date html generated: 2018_05_22-PM-00_08_02
Last ObjectModification: 2018_03_30-AM-10_58_03

Theory : euclidean!plane!geometry


Home Index