Nuprl Lemma : use-plane-sep

g:EuclideanPlaneStructure. ∀a,b,u,v:Point.  (u leftof ab  leftof ba  (∃x:Point. (Colinear(a;b;x) ∧ u_x_v)))


Proof




Definitions occuring in Statement :  euclidean-plane-structure: EuclideanPlaneStructure geo-colinear: Colinear(a;b;c) geo-left: leftof bc geo-between: a_b_c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  squash: T sq_stable: SqStable(P) exists: x:A. B[x] so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  sq_stable__geo-between sq_stable__colinear sq_stable__and euclidean-plane-structure_wf equal_wf geo-between_wf geo-colinear_wf euclidean-plane-structure-subtype geo-point_wf set_wf geo-left_wf geo-SS_wf
Rules used in proof :  imageElimination baseClosed imageMemberEquality productElimination isect_memberEquality independent_functionElimination dependent_functionElimination dependent_pairFormation rename setElimination productEquality lambdaEquality equalitySymmetry equalityTransitivity sqequalRule because_Cache applyEquality hypothesis dependent_set_memberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlaneStructure.  \mforall{}a,b,u,v:Point.
    (u  leftof  ab  {}\mRightarrow{}  v  leftof  ba  {}\mRightarrow{}  (\mexists{}x:Point.  (Colinear(a;b;x)  \mwedge{}  u\_x\_v)))



Date html generated: 2017_10_02-PM-03_26_29
Last ObjectModification: 2017_08_13-PM-08_20_30

Theory : euclidean!plane!geometry


Home Index