Step
*
1
1
of Lemma
Euclid-drop-perp-0
1. e : EuclideanPlane
2. a : Point
3. b : {b:Point| a # b}
4. c : Point
5. a # b
6. u : Point
7. v : Point
8. Colinear(a;b;u)
9. Colinear(a;b;v)
10. u # v
11. cu ≅ cv
12. x : Point
13. y : Point
14. ux ≅ uv
15. uy ≅ uv
16. vx ≅ vu
17. vy ≅ vu
18. x leftof uv
19. y leftof vu
20. x # ab
21. y # ab
22. x # y
23. x # c
⊢ ∃x:Point. (∃p:Point [(Colinear(p;x;c) ∧ ab ⊥p px ∧ x # ab ∧ x # c)])
BY
{ (D 0 With ⌜x⌝ THEN Auto) }
1
1. e : EuclideanPlane
2. a : Point
3. b : {b:Point| a # b}
4. c : Point
5. a # b
6. u : Point
7. v : Point
8. Colinear(a;b;u)
9. Colinear(a;b;v)
10. u # v
11. cu ≅ cv
12. x : Point
13. y : Point
14. ux ≅ uv
15. uy ≅ uv
16. vx ≅ vu
17. vy ≅ vu
18. x leftof uv
19. y leftof vu
20. x # ab
21. y # ab
22. x # y
23. x # c
⊢ ∃p:Point [(Colinear(p;x;c) ∧ ab ⊥p px ∧ x # ab ∧ x # c)]
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : \{b:Point| a \# b\}
4. c : Point
5. a \# b
6. u : Point
7. v : Point
8. Colinear(a;b;u)
9. Colinear(a;b;v)
10. u \# v
11. cu \mcong{} cv
12. x : Point
13. y : Point
14. ux \mcong{} uv
15. uy \mcong{} uv
16. vx \mcong{} vu
17. vy \mcong{} vu
18. x leftof uv
19. y leftof vu
20. x \# ab
21. y \# ab
22. x \# y
23. x \# c
\mvdash{} \mexists{}x:Point. (\mexists{}p:Point [(Colinear(p;x;c) \mwedge{} ab \mbot{}p px \mwedge{} x \# ab \mwedge{} x \# c)])
By
Latex:
(D 0 With \mkleeneopen{}x\mkleeneclose{} THEN Auto)
Home
Index