Step
*
1
1
1
2
2
1
1
2
1
of Lemma
Prop22-inequality-to-triangle-construction
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. a ≠ b
9. b ≠ c
10. c ≠ a
11. x : Point
12. b-a-x
13. ax ≅ OX
14. y : Point
15. a-b-y
16. by ≅ OX
17. c1 : Point
18. x-a-c1
19. ac1 ≅ ac
20. c2 : Point
21. y-b-c2
22. bc2 ≅ bc
23. c1' : Point
24. b-a-c1'
25. ac1' ≅ ac1
26. c2' : Point
27. a-b-c2'
28. bc2' ≅ bc2
29. c1'' : Point
30. a_b_c1''
31. bc1'' ≅ bc1
32. c2'' : Point
33. b_a_c2''
34. ac2'' ≅ ac2
35. a-c1-c2'
36. c2'_b_c2
37. c1'-c2-c2'
38. c1'-a-c1
39. c1'-c2-c1
40. c1 ≠ c1''
41. c1=b=c1''
42. c1 ≠ b
43. c1'_c1_b
44. c1' ≠ c2''
45. b_c1'_c2''
⊢ ∃c1,c2:Point. ((ac ≅ ac1 ∧ bc2 > bc1) ∧ bc ≅ bc2 ∧ ac1 > ac2)
BY
{ ((Assert False BY
((InstLemma `congruence-preserves-between_symmetric-points2` [⌜e⌝;⌜a⌝;⌜c1'⌝;⌜c2''⌝;⌜c1⌝;⌜c2⌝]⋅ THENA Auto)
THEN D -1
))
THEN Auto
) }
1
.....aux.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. a ≠ b
9. b ≠ c
10. c ≠ a
11. x : Point
12. b-a-x
13. ax ≅ OX
14. y : Point
15. a-b-y
16. by ≅ OX
17. c1 : Point
18. x-a-c1
19. ac1 ≅ ac
20. c2 : Point
21. y-b-c2
22. bc2 ≅ bc
23. c1' : Point
24. b-a-c1'
25. ac1' ≅ ac1
26. c2' : Point
27. a-b-c2'
28. bc2' ≅ bc2
29. c1'' : Point
30. a_b_c1''
31. bc1'' ≅ bc1
32. c2'' : Point
33. b_a_c2''
34. ac2'' ≅ ac2
35. a-c1-c2'
36. c2'_b_c2
37. c1'-c2-c2'
38. c1'-a-c1
39. c1'-c2-c1
40. c1 ≠ c1''
41. c1=b=c1''
42. c1 ≠ b
43. c1'_c1_b
44. c1' ≠ c2''
45. b_c1'_c2''
46. a_c1_c2
⊢ False
2
.....aux.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. a ≠ b
9. b ≠ c
10. c ≠ a
11. x : Point
12. b-a-x
13. ax ≅ OX
14. y : Point
15. a-b-y
16. by ≅ OX
17. c1 : Point
18. x-a-c1
19. ac1 ≅ ac
20. c2 : Point
21. y-b-c2
22. bc2 ≅ bc
23. c1' : Point
24. b-a-c1'
25. ac1' ≅ ac1
26. c2' : Point
27. a-b-c2'
28. bc2' ≅ bc2
29. c1'' : Point
30. a_b_c1''
31. bc1'' ≅ bc1
32. c2'' : Point
33. b_a_c2''
34. ac2'' ≅ ac2
35. a-c1-c2'
36. c2'_b_c2
37. c1'-c2-c2'
38. c1'-a-c1
39. c1'-c2-c1
40. c1 ≠ c1''
41. c1=b=c1''
42. c1 ≠ b
43. c1'_c1_b
44. c1' ≠ c2''
45. b_c1'_c2''
46. a_c1'_c2
⊢ False
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ac| < |ab| + |bc|
6. |ab| < |ac| + |bc|
7. |bc| < |ac| + |ab|
8. a \mneq{} b
9. b \mneq{} c
10. c \mneq{} a
11. x : Point
12. b-a-x
13. ax \mcong{} OX
14. y : Point
15. a-b-y
16. by \mcong{} OX
17. c1 : Point
18. x-a-c1
19. ac1 \mcong{} ac
20. c2 : Point
21. y-b-c2
22. bc2 \mcong{} bc
23. c1' : Point
24. b-a-c1'
25. ac1' \mcong{} ac1
26. c2' : Point
27. a-b-c2'
28. bc2' \mcong{} bc2
29. c1'' : Point
30. a\_b\_c1''
31. bc1'' \mcong{} bc1
32. c2'' : Point
33. b\_a\_c2''
34. ac2'' \mcong{} ac2
35. a-c1-c2'
36. c2'\_b\_c2
37. c1'-c2-c2'
38. c1'-a-c1
39. c1'-c2-c1
40. c1 \mneq{} c1''
41. c1=b=c1''
42. c1 \mneq{} b
43. c1'\_c1\_b
44. c1' \mneq{} c2''
45. b\_c1'\_c2''
\mvdash{} \mexists{}c1,c2:Point. ((ac \mcong{} ac1 \mwedge{} bc2 > bc1) \mwedge{} bc \mcong{} bc2 \mwedge{} ac1 > ac2)
By
Latex:
((Assert False BY
((InstLemma `congruence-preserves-between\_symmetric-points2` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c1'\mkleeneclose{};\mkleeneopen{}c2''\mkleeneclose{};\mkleeneopen{}c1\mkleeneclose{};\mkleeneopen{}c2\mkleeneclose{}
]\mcdot{}
THENA Auto
)
THEN D -1
))
THEN Auto
)
Home
Index