Nuprl Lemma : euclidean-parallel-plane_wf
EuclideanParPlane ∈ 𝕌'
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
euclidean-parallel-plane: EuclideanParPlane
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
euclidean-plane_wf, 
Playfair-axiom_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality
Latex:
EuclideanParPlane  \mmember{}  \mBbbU{}'
Date html generated:
2018_05_22-PM-01_09_07
Last ObjectModification:
2018_05_11-PM-06_31_03
Theory : euclidean!plane!geometry
Home
Index