Nuprl Lemma : euclidean-planes-subtype

EuclideanParPlane ⊆EuclideanPlane


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane euclidean-plane: EuclideanPlane subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T euclidean-parallel-plane: EuclideanParPlane
Lemmas referenced :  euclidean-parallel-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality cut introduction extract_by_obid hypothesis

Latex:
EuclideanParPlane  \msubseteq{}r  EuclideanPlane



Date html generated: 2018_05_22-PM-01_09_18
Last ObjectModification: 2018_05_11-PM-06_32_44

Theory : euclidean!plane!geometry


Home Index