Step
*
4
2
1
1
of Lemma
geo-colinear-cons
1. e : BasicGeometry
2. L : Point List
3. A : Point
4. ∀A:Point. ((A ∈ L)
⇒ (∀B∈L.(∀C∈L.Colinear(A;B;C))))
5. (∀B∈L.(∀C∈L.Colinear(A;B;C)))
6. A@0 : Point
7. (A@0 ∈ L)
8. ∀B:Point. ((B ∈ L)
⇒ (∀C∈L.Colinear(A@0;B;C)))
9. (∀C∈[A / L].Colinear(A@0;A;C))
10. B : Point
11. (B ∈ L)
12. (∀C∈L.Colinear(A@0;B;C))
⊢ Colinear(A@0;B;A)
BY
{ ((RWW "l_all_iff" 5 THENA Auto) THEN (InstHyp [⌜B⌝] 5⋅ THENA Auto)) }
1
1. e : BasicGeometry
2. L : Point List
3. A : Point
4. ∀A:Point. ((A ∈ L)
⇒ (∀B∈L.(∀C∈L.Colinear(A;B;C))))
5. ∀B:Point. ((B ∈ L)
⇒ (∀C:Point. ((C ∈ L)
⇒ Colinear(A;B;C))))
6. A@0 : Point
7. (A@0 ∈ L)
8. ∀B:Point. ((B ∈ L)
⇒ (∀C∈L.Colinear(A@0;B;C)))
9. (∀C∈[A / L].Colinear(A@0;A;C))
10. B : Point
11. (B ∈ L)
12. (∀C∈L.Colinear(A@0;B;C))
13. ∀C:Point. ((C ∈ L)
⇒ Colinear(A;B;C))
⊢ Colinear(A@0;B;A)
Latex:
Latex:
1. e : BasicGeometry
2. L : Point List
3. A : Point
4. \mforall{}A:Point. ((A \mmember{} L) {}\mRightarrow{} (\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.Colinear(A;B;C))))
5. (\mforall{}B\mmember{}L.(\mforall{}C\mmember{}L.Colinear(A;B;C)))
6. A@0 : Point
7. (A@0 \mmember{} L)
8. \mforall{}B:Point. ((B \mmember{} L) {}\mRightarrow{} (\mforall{}C\mmember{}L.Colinear(A@0;B;C)))
9. (\mforall{}C\mmember{}[A / L].Colinear(A@0;A;C))
10. B : Point
11. (B \mmember{} L)
12. (\mforall{}C\mmember{}L.Colinear(A@0;B;C))
\mvdash{} Colinear(A@0;B;A)
By
Latex:
((RWW "l\_all\_iff" 5 THENA Auto) THEN (InstHyp [\mkleeneopen{}B\mkleeneclose{}] 5\mcdot{} THENA Auto))
Home
Index