Step
*
1
2
2
2
of Lemma
geo-colinear-implies
1. e : BasicGeometry-
2. BasicGeometryAxioms(e)
3. a : Point
4. b : Point
5. c : Point
6. ¬a # bc
7. ¬(((¬ab>ac) ∧ (¬bc>ac)) ∧ (¬a # bc))
8. ∀a,b,c,d:Point. (ab>cd
⇒ (¬cd>ab))
9. bc>ac
10. ¬ca>cb
11. ab>cb
12. ¬bc>ba
13. ca>ba
⊢ False
BY
{ ((InstLemma `geo-gt-prim-transitivity` [⌜e⌝;⌜b⌝;⌜c⌝;⌜a⌝;⌜c⌝;⌜b⌝;⌜a⌝]⋅ THEN Auto)
THENA (InstLemma `geo-gt-prim-symmetry` [⌜e⌝;⌜c⌝;⌜a⌝;⌜b⌝;⌜a⌝]⋅ THEN Auto)
) }
Latex:
Latex:
1. e : BasicGeometry-
2. BasicGeometryAxioms(e)
3. a : Point
4. b : Point
5. c : Point
6. \mneg{}a \# bc
7. \mneg{}(((\mneg{}ab>ac) \mwedge{} (\mneg{}bc>ac)) \mwedge{} (\mneg{}a \# bc))
8. \mforall{}a,b,c,d:Point. (ab>cd {}\mRightarrow{} (\mneg{}cd>ab))
9. bc>ac
10. \mneg{}ca>cb
11. ab>cb
12. \mneg{}bc>ba
13. ca>ba
\mvdash{} False
By
Latex:
((InstLemma `geo-gt-prim-transitivity` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THEN Auto)
THENA (InstLemma `geo-gt-prim-symmetry` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THEN Auto)
)
Home
Index