Step * 1 1 1 2 of Lemma geo-ge_functionality


1. EuclideanPlaneStructure
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e@0,f:Point.  (ab>cd  cd ≥ e@0f  ab>e@0f)
6. ∀a,b,c,d,e@0,f:Point.  (ab ≥ cd  cd>e@0f  ab>e@0f)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. a1 Point
16. a2 Point
17. b1 Point
18. b2 Point
19. c1 Point
20. c2 Point
21. d1 Point
22. d2 Point
23. a1 ≡ a2
24. b1 ≡ b2
25. c1 ≡ c2
26. d1 ≡ d2
27. ∀a:Point. a ≡ a
28. ∀a,b:Point.  ab ≅ ba
29. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
30. a1b1 ≥ c1d1
31. c2d2>a2b2
32. c2d2 ≅ c1d2
33. d2c1 ≅ d1c1
34. c2d2 ≅ d1c1
35. c2d2>a1b1
⊢ False
BY
(Assert ∀a,b,c,d,e1,f:Point.  (ab ≥ cd  cd ≥ e1f  ab ≥ e1f) BY
         (Intros THEN RepeatFor (ParallelLast) THEN Auto)) }

1
1. EuclideanPlaneStructure
2. ∀a,b,c,d:Point.  (ab>cd  ab ≥ cd)
3. ∀a,b,c:Point.  (ba>ac  c)
4. ∀a,b,c:Point.  bc ≥ aa
5. ∀a,b,c,d,e@0,f:Point.  (ab>cd  cd ≥ e@0f  ab>e@0f)
6. ∀a,b,c,d,e@0,f:Point.  (ab ≥ cd  cd>e@0f  ab>e@0f)
7. ∀a,b,c:Point.  (B(abc)   ac>ab)
8. ∀a,b,c:Point.  (a leftof bc  leftof ca)
9. ∀a,b,c:Point.  (a leftof bc  c)
10. ∀a,b,c,d:Point.  (B(abd)  B(bcd)  B(abc))
11. ∀a,b,c,d,A,B,C,D:Point.  (a  B(abc)  B(ABC)  ab ≅ AB  bc ≅ BC  ad ≅ AD  bd ≅ BD  cd ≅ CD)
12. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   bc))
13. ∀a,b,x,y,z:Point.  (x leftof ab  leftof ab  B(xzy)  leftof ab)
14. ∀a,b,c,y:Point.  (a bc   ab)  bc)
15. a1 Point
16. a2 Point
17. b1 Point
18. b2 Point
19. c1 Point
20. c2 Point
21. d1 Point
22. d2 Point
23. a1 ≡ a2
24. b1 ≡ b2
25. c1 ≡ c2
26. d1 ≡ d2
27. ∀a:Point. a ≡ a
28. ∀a,b:Point.  ab ≅ ba
29. ∀a,b,c:Point.  (a ≡  ac ≅ bc)
30. a1b1 ≥ c1d1
31. c2d2>a2b2
32. c2d2 ≅ c1d2
33. d2c1 ≅ d1c1
34. c2d2 ≅ d1c1
35. c2d2>a1b1
36. ∀a,b,c,d,e1,f:Point.  (ab ≥ cd  cd ≥ e1f  ab ≥ e1f)
⊢ False


Latex:


Latex:

1.  e  :  EuclideanPlaneStructure
2.  \mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  ab  \mgeq{}  cd)
3.  \mforall{}a,b,c:Point.    (ba>ac  {}\mRightarrow{}  b  \#  c)
4.  \mforall{}a,b,c:Point.    bc  \mgeq{}  aa
5.  \mforall{}a,b,c,d,e@0,f:Point.    (ab>cd  {}\mRightarrow{}  cd  \mgeq{}  e@0f  {}\mRightarrow{}  ab>e@0f)
6.  \mforall{}a,b,c,d,e@0,f:Point.    (ab  \mgeq{}  cd  {}\mRightarrow{}  cd>e@0f  {}\mRightarrow{}  ab>e@0f)
7.  \mforall{}a,b,c:Point.    (B(abc)  {}\mRightarrow{}  b  \#  c  {}\mRightarrow{}  ac>ab)
8.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  leftof  ca)
9.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  b  \#  c)
10.  \mforall{}a,b,c,d:Point.    (B(abd)  {}\mRightarrow{}  B(bcd)  {}\mRightarrow{}  B(abc))
11.  \mforall{}a,b,c,d,A,B,C,D:Point.
            (a  \#  b  {}\mRightarrow{}  B(abc)  {}\mRightarrow{}  B(ABC)  {}\mRightarrow{}  ab  \mcong{}  AB  {}\mRightarrow{}  bc  \mcong{}  BC  {}\mRightarrow{}  ad  \mcong{}  AD  {}\mRightarrow{}  bd  \mcong{}  BD  {}\mRightarrow{}  cd  \mcong{}  CD)
12.  \mforall{}a,b,c,x,y:Point.    (ax  \mcong{}  ay  {}\mRightarrow{}  bx  \mcong{}  by  {}\mRightarrow{}  cx  \mcong{}  cy  {}\mRightarrow{}  x  \#  y  {}\mRightarrow{}  (\mneg{}a  \#  bc))
13.  \mforall{}a,b,x,y,z:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  B(xzy)  {}\mRightarrow{}  z  leftof  ab)
14.  \mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \#  b  {}\mRightarrow{}  (\mneg{}y  \#  ab)  {}\mRightarrow{}  y  \#  bc)
15.  a1  :  Point
16.  a2  :  Point
17.  b1  :  Point
18.  b2  :  Point
19.  c1  :  Point
20.  c2  :  Point
21.  d1  :  Point
22.  d2  :  Point
23.  a1  \mequiv{}  a2
24.  b1  \mequiv{}  b2
25.  c1  \mequiv{}  c2
26.  d1  \mequiv{}  d2
27.  \mforall{}a:Point.  a  \mequiv{}  a
28.  \mforall{}a,b:Point.    ab  \mcong{}  ba
29.  \mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  ac  \mcong{}  bc)
30.  a1b1  \mgeq{}  c1d1
31.  c2d2>a2b2
32.  c2d2  \mcong{}  c1d2
33.  d2c1  \mcong{}  d1c1
34.  c2d2  \mcong{}  d1c1
35.  c2d2>a1b1
\mvdash{}  False


By


Latex:
(Assert  \mforall{}a,b,c,d,e1,f:Point.    (ab  \mgeq{}  cd  {}\mRightarrow{}  cd  \mgeq{}  e1f  {}\mRightarrow{}  ab  \mgeq{}  e1f)  BY
              (Intros  THEN  RepeatFor  2  (ParallelLast)  THEN  Auto))




Home Index