Nuprl Lemma : geo-le-pt-right-comm
∀e:BasicGeometry. ∀a,b,c,d:Point.  (a ≠ b 
⇒ ab≤cd 
⇒ ab≤dc)
Proof
Definitions occuring in Statement : 
geo-le-pt: ab≤cd
, 
basic-geometry: BasicGeometry
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-sep_wf, 
geo-le-pt_wf, 
geo-le-pt-transitivity, 
geo-le-pt-comm
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
rename, 
setElimination, 
isectElimination, 
independent_functionElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (a  \mneq{}  b  {}\mRightarrow{}  ab\mleq{}cd  {}\mRightarrow{}  ab\mleq{}dc)
Date html generated:
2017_10_02-PM-06_46_59
Last ObjectModification:
2017_08_05-PM-04_51_47
Theory : euclidean!plane!geometry
Home
Index