Nuprl Lemma : geo-le-pt-right-comm

e:BasicGeometry. ∀a,b,c,d:Point.  (a ≠  ab≤cd  ab≤dc)


Proof




Definitions occuring in Statement :  geo-le-pt: ab≤cd basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B basic-geometry: BasicGeometry uall: [x:A]. B[x] prop: implies:  Q all: x:A. B[x] member: t ∈ T
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-le-pt_wf geo-le-pt-transitivity geo-le-pt-comm
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality rename setElimination isectElimination independent_functionElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation hypothesis hypothesisEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (a  \mneq{}  b  {}\mRightarrow{}  ab\mleq{}cd  {}\mRightarrow{}  ab\mleq{}dc)



Date html generated: 2017_10_02-PM-06_46_59
Last ObjectModification: 2017_08_05-PM-04_51_47

Theory : euclidean!plane!geometry


Home Index