Nuprl Lemma : geo-left-convex

g:OrientedPlane. ∀a,b:Point.  IsConvex(x.x leftof ab)


Proof




Definitions occuring in Statement :  geo-convex: IsConvex(x.P[x]) oriented-plane: OrientedPlane geo-left: leftof bc geo-point: Point all: x:A. B[x]
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B oriented-plane: Error :oriented-plane,  uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q geo-convex: IsConvex(x.P[x]) all: x:A. B[x]
Lemmas referenced :  Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  Error :o-geo-structure_wf,  Error :oriented-plane_wf,  subtype_rel_transitivity Error :oriented-plane-subtype1,  Error :o-geo-structure-subtype,  geo-point_wf geo-between_wf geo-left_wf left-between-weak
Rules used in proof :  independent_isectElimination instantiate sqequalRule because_Cache applyEquality rename setElimination isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b:Point.    IsConvex(x.x  leftof  ab)



Date html generated: 2017_10_02-PM-06_49_15
Last ObjectModification: 2017_08_06-PM-07_29_02

Theory : euclidean!plane!geometry


Home Index