Step
*
1
2
of Lemma
geo-lt-angle-or
1. e : EuclideanPlane
2. b : Point
3. y : Point
4. a : Point
5. a # b
6. c : Point
7. c # b
8. x : Point
9. x # y
10. z : Point
11. z # y
12. a leftof cb
13. x # yz
⊢ ¬¬(xyz < abc ∨ abc < xyz ∨ abc ≅a xyz)
BY
{ (((InstLemma `Euclid-Prop23_half-plane2` [⌜e⌝;⌜b⌝;⌜c⌝;⌜y⌝;⌜z⌝;⌜x⌝]⋅ THENA Auto) THEN ExRepD)
THEN (Assert x' leftof cb BY
(InstLemma `geo-left-out-1` [⌜e⌝;⌜b⌝;⌜b'⌝;⌜c⌝;⌜x'⌝]⋅ THEN EAuto 1))
) }
1
1. e : EuclideanPlane
2. b : Point
3. y : Point
4. a : Point
5. a # b
6. c : Point
7. c # b
8. x : Point
9. x # y
10. z : Point
11. z # y
12. a leftof cb
13. x # yz
14. x' : Point
15. b' : Point
16. out(b cb')
17. x' leftof b'b
18. x'bb' ≅a xyz
19. x' leftof cb
⊢ ¬¬(xyz < abc ∨ abc < xyz ∨ abc ≅a xyz)
Latex:
Latex:
1. e : EuclideanPlane
2. b : Point
3. y : Point
4. a : Point
5. a \# b
6. c : Point
7. c \# b
8. x : Point
9. x \# y
10. z : Point
11. z \# y
12. a leftof cb
13. x \# yz
\mvdash{} \mneg{}\mneg{}(xyz < abc \mvee{} abc < xyz \mvee{} abc \mcong{}\msuba{} xyz)
By
Latex:
(((InstLemma `Euclid-Prop23\_half-plane2` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto) THEN ExRepD)
THEN (Assert x' leftof cb BY
(InstLemma `geo-left-out-1` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}b'\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}x'\mkleeneclose{}]\mcdot{} THEN EAuto 1))
)
Home
Index