Step
*
3
1
of Lemma
greatest-cevian-is-farthest-from-perp
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a # bc
7. ad ⊥d bc
8. x : {x:Point| Colinear(b;c;x)}
9. y : {x:Point| Colinear(b;c;x)}
10. d-x-y
11. a # dx
12. a' : Point
13. a-d-a'
14. da' ≅ ad
⊢ |ax| < |ay|
BY
{ (Assert a'x ≅ ax BY
(InstLemma `geo-reflected-right-triangles-congruent` [⌜e⌝;⌜a⌝;⌜d⌝;⌜x⌝;⌜a'⌝]⋅ THEN Auto)) }
1
.....aux.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a # bc
7. ad ⊥d bc
8. x : {x:Point| Colinear(b;c;x)}
9. y : {x:Point| Colinear(b;c;x)}
10. d-x-y
11. a # dx
12. a' : Point
13. a-d-a'
14. da' ≅ ad
⊢ Rxda
2
.....aux.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a # bc
7. ad ⊥d bc
8. x : {x:Point| Colinear(b;c;x)}
9. y : {x:Point| Colinear(b;c;x)}
10. d-x-y
11. a # dx
12. a' : Point
13. a-d-a'
14. da' ≅ ad
⊢ a=d=a'
3
.....aux.....
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a # bc
7. ad ⊥d bc
8. x : {x:Point| Colinear(b;c;x)}
9. y : {x:Point| Colinear(b;c;x)}
10. d-x-y
11. a # dx
12. a' : Point
13. a-d-a'
14. da' ≅ ad
15. Cong3(adx,a'dx)
⊢ a'x ≅ ax
4
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a # bc
7. ad ⊥d bc
8. x : {x:Point| Colinear(b;c;x)}
9. y : {x:Point| Colinear(b;c;x)}
10. d-x-y
11. a # dx
12. a' : Point
13. a-d-a'
14. da' ≅ ad
15. a'x ≅ ax
⊢ |ax| < |ay|
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a \# bc
7. ad \mbot{}d bc
8. x : \{x:Point| Colinear(b;c;x)\}
9. y : \{x:Point| Colinear(b;c;x)\}
10. d-x-y
11. a \# dx
12. a' : Point
13. a-d-a'
14. da' \mcong{} ad
\mvdash{} |ax| < |ay|
By
Latex:
(Assert a'x \mcong{} ax BY
(InstLemma `geo-reflected-right-triangles-congruent` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a'\mkleeneclose{}]\mcdot{} THEN Auto))
Home
Index