Nuprl Lemma : lsep-inner-pasch-strict-ext
∀e:OrientedPlane. ∀a,b:Point. ∀c:{c:Point| c # ab} . ∀p:{p:Point| a-p-c} . ∀q:{q:Point| b-q-c} .
  (∃x:{Point| (b-x-p ∧ a-x-q)})
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-lsep: a # bc
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
member: t ∈ T
, 
lsep-inner-pasch-strict, 
sq_stable__and, 
lsep-inner-pasch-ext, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
lsep-inner-pasch-strict, 
sq_stable__and, 
lsep-inner-pasch-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:OrientedPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ab\}  .  \mforall{}p:\{p:Point|  a-p-c\}  .  \mforall{}q:\{q:Point|  b-q-c\}  .
    (\mexists{}x:\{Point|  (b-x-p  \mwedge{}  a-x-q)\})
Date html generated:
2017_10_02-PM-04_48_27
Last ObjectModification:
2017_08_13-PM-11_39_20
Theory : euclidean!plane!geometry
Home
Index