Nuprl Lemma : lsep-inner-pasch-strict-ext

e:OrientedPlane. ∀a,b:Point. ∀c:{c:Point| ab} . ∀p:{p:Point| a-p-c} . ∀q:{q:Point| b-q-c} .
  (∃x:{Point| (b-x-p ∧ a-x-q)})


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T lsep-inner-pasch-strict sq_stable__and lsep-inner-pasch-ext ifthenelse: if then else fi 
Lemmas referenced :  lsep-inner-pasch-strict sq_stable__and lsep-inner-pasch-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:OrientedPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ab\}  .  \mforall{}p:\{p:Point|  a-p-c\}  .  \mforall{}q:\{q:Point|  b-q-c\}  .
    (\mexists{}x:\{Point|  (b-x-p  \mwedge{}  a-x-q)\})



Date html generated: 2017_10_02-PM-04_48_27
Last ObjectModification: 2017_08_13-PM-11_39_20

Theory : euclidean!plane!geometry


Home Index