Nuprl Lemma : lsep-inner-pasch-strict
∀e:OrientedPlane. ∀a,b:Point. ∀c:{c:Point| c # ab} . ∀p:{p:Point| a-p-c} . ∀q:{q:Point| b-q-c} .
  (∃x:{Point| (b-x-p ∧ a-x-q)})
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-lsep: a # bc
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
oriented-plane: OrientedPlane
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
prop: ℙ
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_exists: ∃x:{A| B[x]}
, 
or: P ∨ Q
, 
geo-strict-between: a-b-c
Lemmas referenced : 
lsep-inner-pasch-ext, 
sq_stable__geo-lsep, 
sq_stable__geo-strict-between, 
colinear-lsep-cycle, 
lsep-all-sym, 
geo-strict-between-sep3, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
oriented-plane-subtype, 
subtype_rel_transitivity, 
oriented-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear-is-colinear-set, 
geo-strict-between-implies-colinear, 
subtype_rel_self, 
basic-geo-axioms_wf, 
geo-left-axioms_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
geo-strict-between-sep2, 
set_wf, 
geo-point_wf, 
geo-strict-between_wf, 
geo-lsep_wf, 
sq_stable__and, 
geo-between_wf, 
sq_stable__geo-between, 
geo-sep-or, 
lsep-implies-sep, 
geo-sep_wf, 
geo-sep-sym, 
geo-between-implies-colinear, 
subtype_rel_sets, 
colinear-lsep2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
productElimination, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
setEquality, 
productEquality, 
cumulativity, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaEquality, 
promote_hyp, 
unionElimination, 
dependent_set_memberFormation
Latex:
\mforall{}e:OrientedPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ab\}  .  \mforall{}p:\{p:Point|  a-p-c\}  .  \mforall{}q:\{q:Point|  b-q-c\}  .
    (\mexists{}x:\{Point|  (b-x-p  \mwedge{}  a-x-q)\})
Date html generated:
2017_10_02-PM-04_48_23
Last ObjectModification:
2017_08_13-PM-08_40_37
Theory : euclidean!plane!geometry
Home
Index