Nuprl Lemma : lsep-inner-pasch-strict

e:OrientedPlane. ∀a,b:Point. ∀c:{c:Point| ab} . ∀p:{p:Point| a-p-c} . ∀q:{q:Point| b-q-c} .
  (∃x:{Point| (b-x-p ∧ a-x-q)})


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T oriented-plane: OrientedPlane euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q squash: T guard: {T} and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a basic-geometry: BasicGeometry prop: geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b true: True select: L[n] cons: [a b] subtract: m so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:{A| B[x]} or: P ∨ Q geo-strict-between: a-b-c
Lemmas referenced :  lsep-inner-pasch-ext sq_stable__geo-lsep sq_stable__geo-strict-between colinear-lsep-cycle lsep-all-sym geo-strict-between-sep3 euclidean-plane-structure-subtype euclidean-plane-subtype oriented-plane-subtype subtype_rel_transitivity oriented-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear-is-colinear-set geo-strict-between-implies-colinear subtype_rel_self basic-geo-axioms_wf geo-left-axioms_wf length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-strict-between-sep2 set_wf geo-point_wf geo-strict-between_wf geo-lsep_wf sq_stable__and geo-between_wf sq_stable__geo-between geo-sep-or lsep-implies-sep geo-sep_wf geo-sep-sym geo-between-implies-colinear subtype_rel_sets colinear-lsep2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination because_Cache productElimination applyEquality instantiate isectElimination independent_isectElimination setEquality productEquality cumulativity isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaEquality promote_hyp unionElimination dependent_set_memberFormation

Latex:
\mforall{}e:OrientedPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ab\}  .  \mforall{}p:\{p:Point|  a-p-c\}  .  \mforall{}q:\{q:Point|  b-q-c\}  .
    (\mexists{}x:\{Point|  (b-x-p  \mwedge{}  a-x-q)\})



Date html generated: 2017_10_02-PM-04_48_23
Last ObjectModification: 2017_08_13-PM-08_40_37

Theory : euclidean!plane!geometry


Home Index