Nuprl Lemma : colinear-lsep2

g:OrientedPlane. ∀a,b,c,x,y:Point.  (a bc  x ≠  Colinear(a;b;x)  y ≠  Colinear(b;c;y)  yc)


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: oriented-plane: OrientedPlane member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-lsep_wf geo-sep_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf oriented-plane_wf subtype_rel_transitivity oriented-plane-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-colinear_wf geo-sep-sym colinear-lsep' colinear-lsep-cycle
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality isectElimination because_Cache hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c,x,y:Point.
    (a  \#  bc  {}\mRightarrow{}  x  \mneq{}  b  {}\mRightarrow{}  Colinear(a;b;x)  {}\mRightarrow{}  y  \mneq{}  c  {}\mRightarrow{}  Colinear(b;c;y)  {}\mRightarrow{}  x  \#  yc)



Date html generated: 2017_10_02-PM-04_47_18
Last ObjectModification: 2017_08_07-PM-00_02_39

Theory : euclidean!plane!geometry


Home Index