Nuprl Lemma : colinear-lsep'

g:OrientedPlane. ∀a,b,c,y:Point.  (y ab  b ≠  Colinear(a;b;c)  cb)


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: subtract: m cons: [a b] select: L[n] l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x] oriented-plane: OrientedPlane
Lemmas referenced :  geo-point_wf geo-lsep_wf geo-sep_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf oriented-plane_wf subtype_rel_transitivity oriented-plane-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-colinear_wf geo-colinear-is-colinear-set geo-sep-sym lsep-all-sym colinear-lsep
Rules used in proof :  independent_isectElimination instantiate applyEquality isectElimination sqequalRule productElimination hypothesis independent_functionElimination hypothesisEquality because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c,y:Point.    (y  \#  ab  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  Colinear(a;b;c)  {}\mRightarrow{}  y  \#  cb)



Date html generated: 2017_10_02-PM-04_47_07
Last ObjectModification: 2017_08_08-PM-00_34_39

Theory : euclidean!plane!geometry


Home Index