Step * 2 1 of Lemma outer-Pasch


1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. Point
7. leftof ba
8. B(abc)
9. b-x-y
10. leftof ax
11. leftof xb
⊢ ∃p:Point [(B(axp) ∧ B(cpy))]
BY
(((Assert leftof ax BY
           (InstLemma `left-convex2` [⌜e⌝;⌜a⌝;⌜x⌝;⌜b⌝;⌜c⌝]⋅ THEN Auto))
    THEN (Assert leftof xa BY
                (InstLemma `left-between-implies-right1` [⌜e⌝;⌜a⌝;⌜x⌝;⌜b⌝;⌜y⌝]⋅ THEN Auto))
    )
   THEN InstLemma `use-plane-sep` [⌜e⌝;⌜x⌝;⌜a⌝;⌜y⌝;⌜c⌝]⋅
   THEN Auto) }

1
1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. Point
7. leftof ba
8. B(abc)
9. b-x-y
10. leftof ax
11. leftof xb
12. leftof ax
13. leftof xa
14. ∃x@0:Point. (Colinear(x;a;x@0) ∧ B(yx@0c))
⊢ ∃p:Point [(B(axp) ∧ B(cpy))]


Latex:


Latex:

1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  x  :  Point
6.  y  :  Point
7.  x  leftof  ba
8.  B(abc)
9.  b-x-y
10.  b  leftof  ax
11.  a  leftof  xb
\mvdash{}  \mexists{}p:Point  [(B(axp)  \mwedge{}  B(cpy))]


By


Latex:
(((Assert  c  leftof  ax  BY
                  (InstLemma  `left-convex2`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THEN  Auto))
    THEN  (Assert  y  leftof  xa  BY
                            (InstLemma  `left-between-implies-right1`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}]\mcdot{}  THEN  Auto))
    )
  THEN  InstLemma  `use-plane-sep`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}
  THEN  Auto)




Home Index