Step
*
1
1
of Lemma
perp-aux-general-construction
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. c # ba
7. Colinear(a;b;x)
8. Colinear(c;x;x)
9. ∀u,v:Point. (Colinear(a;b;u)
⇒ Colinear(c;x;v)
⇒ Ruxv)
10. a ≠ x
11. Raxc
12. Rbxc
13. Point
14. c ≠ x
15. c' : Point
16. c-x-c' ∧ xc' ≅ cx
⊢ ∃c1,c',p:Point. (((c=a=c1 ∧ c=x=c') ∧ c'a ≅ ca) ∧ c' # c1a ∧ ((a # cc' ∧ c1=p=c') ∧ ab ⊥a pa) ∧ p # ab)
BY
{ ((Duplicate 11 THEN Unfold `right-angle` -1)
THEN (Assert c'=x=c BY
(D 0 THEN Auto))
THEN ((InstHyp [⌜c'⌝] 17⋅ THENA Auto) THENA (D 0 THEN Auto))) }
1
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. c # ba
7. Colinear(a;b;x)
8. Colinear(c;x;x)
9. ∀u,v:Point. (Colinear(a;b;u)
⇒ Colinear(c;x;v)
⇒ Ruxv)
10. a ≠ x
11. Raxc
12. Rbxc
13. Point
14. c ≠ x
15. c' : Point
16. c-x-c' ∧ xc' ≅ cx
17. ∀c':Point. (c'=x=c
⇒ ac ≅ ac')
18. c'=x=c
19. ac ≅ ac'
⊢ ∃c1,c',p:Point. (((c=a=c1 ∧ c=x=c') ∧ c'a ≅ ca) ∧ c' # c1a ∧ ((a # cc' ∧ c1=p=c') ∧ ab ⊥a pa) ∧ p # ab)
Latex:
Latex:
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. x : Point
6. c \# ba
7. Colinear(a;b;x)
8. Colinear(c;x;x)
9. \mforall{}u,v:Point. (Colinear(a;b;u) {}\mRightarrow{} Colinear(c;x;v) {}\mRightarrow{} Ruxv)
10. a \mneq{} x
11. Raxc
12. Rbxc
13. Point
14. c \mneq{} x
15. c' : Point
16. c-x-c' \mwedge{} xc' \00D0 cx
\mvdash{} \mexists{}c1,c',p:Point
(((c=a=c1 \mwedge{} c=x=c') \mwedge{} c'a \00D0 ca) \mwedge{} c' \# c1a \mwedge{} ((a \# cc' \mwedge{} c1=p=c') \mwedge{} ab \mbot{}a pa) \mwedge{} p \# ab)
By
Latex:
((Duplicate 11 THEN Unfold `right-angle` -1)
THEN (Assert c'=x=c BY
(D 0 THEN Auto))
THEN ((InstHyp [\mkleeneopen{}c'\mkleeneclose{}] 17\mcdot{} THENA Auto) THENA (D 0 THEN Auto)))
Home
Index