Nuprl Lemma : pgeo-leq-equiv
∀g:ProjectivePlane. EquivRel(Line;p,q.p ≡ q)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-leq: a ≡ b
, 
pgeo-line: Line
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
trans: Trans(T;x,y.E[x; y])
, 
prop: ℙ
, 
sym: Sym(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
refl: Refl(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-leq_transitivity, 
pgeo-leq_wf, 
pgeo-leq_inversion, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
pgeo-leq_weakening
Rules used in proof : 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  EquivRel(Line;p,q.p  \mequiv{}  q)
Date html generated:
2018_05_22-PM-00_45_18
Last ObjectModification:
2018_01_03-PM-03_42_30
Theory : euclidean!plane!geometry
Home
Index