Nuprl Lemma : pgeo-leq-equiv

g:ProjectivePlane. EquivRel(Line;p,q.p ≡ q)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-leq: a ≡ b pgeo-line: Line equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Definitions unfolded in proof :  trans: Trans(T;x,y.E[x; y]) prop: sym: Sym(T;x,y.E[x; y]) cand: c∧ B uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q member: t ∈ T refl: Refl(T;x,y.E[x; y]) and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  pgeo-leq_transitivity pgeo-leq_wf pgeo-leq_inversion pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-line_wf pgeo-leq_weakening
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis independent_functionElimination because_Cache hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  EquivRel(Line;p,q.p  \mequiv{}  q)



Date html generated: 2018_05_22-PM-00_45_18
Last ObjectModification: 2018_01_03-PM-03_42_30

Theory : euclidean!plane!geometry


Home Index