Nuprl Lemma : pgeo-leq-sym

g:ProjectivePlane. ∀l,m:Line.  (l ≡  m ≡ l)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-leq: a ≡ b pgeo-line: Line all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: false: False member: t ∈ T not: ¬A pgeo-leq: a ≡ b implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-line_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-leq_wf pgeo-lsep_wf
Rules used in proof :  independent_isectElimination instantiate sqequalRule because_Cache applyEquality isectElimination voidElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin independent_functionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l,m:Line.    (l  \mequiv{}  m  {}\mRightarrow{}  m  \mequiv{}  l)



Date html generated: 2018_05_22-PM-00_42_56
Last ObjectModification: 2017_11_16-AM-10_58_11

Theory : euclidean!plane!geometry


Home Index