Nuprl Lemma : pgeo-leq-test
∀g:ProjectivePlane. ∀l,m,l1,m1:Line.  (l ≡ l1 
⇒ m ≡ m1 
⇒ l ≡ m 
⇒ l1 ≡ m1)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-leq: a ≡ b
, 
pgeo-line: Line
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-line_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
basic-projective-plane_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
basic-projective-plane-subtype, 
projective-plane-structure_subtype, 
pgeo-leq_wf, 
pgeo-leq_transitivity, 
pgeo-leq_inversion
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l,m,l1,m1:Line.    (l  \mequiv{}  l1  {}\mRightarrow{}  m  \mequiv{}  m1  {}\mRightarrow{}  l  \mequiv{}  m  {}\mRightarrow{}  l1  \mequiv{}  m1)
Date html generated:
2018_05_22-PM-00_45_27
Last ObjectModification:
2017_12_05-AM-08_26_44
Theory : euclidean!plane!geometry
Home
Index