Nuprl Lemma : pgeo-leq-test

g:ProjectivePlane. ∀l,m,l1,m1:Line.  (l ≡ l1  m ≡ m1  l ≡  l1 ≡ m1)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-leq: a ≡ b pgeo-line: Line all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-line_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-leq_wf pgeo-leq_transitivity pgeo-leq_inversion
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l,m,l1,m1:Line.    (l  \mequiv{}  l1  {}\mRightarrow{}  m  \mequiv{}  m1  {}\mRightarrow{}  l  \mequiv{}  m  {}\mRightarrow{}  l1  \mequiv{}  m1)



Date html generated: 2018_05_22-PM-00_45_27
Last ObjectModification: 2017_12_05-AM-08_26_44

Theory : euclidean!plane!geometry


Home Index