Nuprl Lemma : pgeo-lpsep-dual
∀[p,l,b:Top].  (l ≠ b ~ l ≠ b)
Proof
Definitions occuring in Statement : 
pgeo-lpsep: a ≠ b
, 
pgeo-dual-prim: pg*
, 
pgeo-plsep: a ≠ b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pgeo-dual-prim: pg*
, 
pgeo-plsep: a ≠ b
, 
pgeo-lpsep: a ≠ b
, 
mk-pgeo-prim: mk-pgeo-prim, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[p,l,b:Top].    (l  \mneq{}  b  \msim{}  l  \mneq{}  b)
Date html generated:
2018_05_22-PM-00_25_11
Last ObjectModification:
2017_10_31-PM-01_56_30
Theory : euclidean!plane!geometry
Home
Index