Nuprl Lemma : pgeo-meet-incidence
∀g:BasicProjectivePlane. ∀l,m:Line. ∀s:l ≠ m.  (l ∧ m I l ∧ l ∧ m I m)
Proof
Definitions occuring in Statement : 
basic-projective-plane: BasicProjectivePlane
, 
pgeo-meet: l ∧ m
, 
pgeo-lsep: l ≠ m
, 
pgeo-incident: a I b
, 
pgeo-line: Line
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
basic-projective-plane: BasicProjectivePlane
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-line_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
basic-projective-plane_wf, 
subtype_rel_transitivity, 
basic-projective-plane-subtype, 
projective-plane-structure_subtype, 
pgeo-lsep_wf, 
pgeo-meet-incident
Rules used in proof : 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
because_Cache, 
independent_pairFormation, 
productElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}l,m:Line.  \mforall{}s:l  \mneq{}  m.    (l  \mwedge{}  m  I  l  \mwedge{}  l  \mwedge{}  m  I  m)
Date html generated:
2018_05_22-PM-00_36_29
Last ObjectModification:
2017_11_29-PM-03_33_13
Theory : euclidean!plane!geometry
Home
Index