Step
*
1
2
1
1
2
1
1
2
of Lemma
tarski-erect-perp1
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c # ba
6. x : Point
7. Colinear(a;b;x)
8. ab ⊥x cx
9. Colinear(a;b;x)
10. Colinear(c;x;x)
11. ∀u,v:Point. (Colinear(a;b;u)
⇒ Colinear(c;x;v)
⇒ Ruxv)
12. Raxc
13. Rbxc
14. c # ba
15. c ≠ x
16. c' : Point
17. c-x-c'
18. xc' ≅ cx
19. a ≠ x
20. ∀c':Point. (c'=x=c
⇒ ac ≅ ac')
21. ac ≅ ac'
22. c1 : Point
23. c-a-c1
24. ac1 ≅ ca
25. c' # c1a
26. p : Point
27. c'=p=c1
28. Rxap
29. c'_p_c1
30. c' ≠ c1
31. c' ≠ p
32. c1 ≠ p
33. a ≠ p
34. q : Point
35. p-q-c
36. x-q-a
37. ab ⊥a pa
⇒ (Colinear(a;b;a) ∧ Colinear(p;a;a) ∧ (∃u,v:Point. (Colinear(a;b;u) ∧ Colinear(p;a;v) ∧ u ≠ a ∧ v ≠ a ∧ Ruav)))
38. ab ⊥a pa
⊢ ∃d:Point. ((ab ⊥ pa ∧ Colinear(a;b;q)) ∧ p-q-d)
BY
{ ((InstConcl [⌜c⌝]⋅ THEN Auto) THEN (Unfold `geo-perp` 0 THENA Auto) THEN InstConcl [⌜a⌝]⋅ THEN Auto) }
Latex:
Latex:
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c \# ba
6. x : Point
7. Colinear(a;b;x)
8. ab \mbot{}x cx
9. Colinear(a;b;x)
10. Colinear(c;x;x)
11. \mforall{}u,v:Point. (Colinear(a;b;u) {}\mRightarrow{} Colinear(c;x;v) {}\mRightarrow{} Ruxv)
12. Raxc
13. Rbxc
14. c \# ba
15. c \mneq{} x
16. c' : Point
17. c-x-c'
18. xc' \00D0 cx
19. a \mneq{} x
20. \mforall{}c':Point. (c'=x=c {}\mRightarrow{} ac \00D0 ac')
21. ac \00D0 ac'
22. c1 : Point
23. c-a-c1
24. ac1 \00D0 ca
25. c' \# c1a
26. p : Point
27. c'=p=c1
28. Rxap
29. c'\_p\_c1
30. c' \mneq{} c1
31. c' \mneq{} p
32. c1 \mneq{} p
33. a \mneq{} p
34. q : Point
35. p-q-c
36. x-q-a
37. ab \mbot{}a pa
{}\mRightarrow{} (Colinear(a;b;a)
\mwedge{} Colinear(p;a;a)
\mwedge{} (\mexists{}u,v:Point. (Colinear(a;b;u) \mwedge{} Colinear(p;a;v) \mwedge{} u \mneq{} a \mwedge{} v \mneq{} a \mwedge{} Ruav)))
38. ab \mbot{}a pa
\mvdash{} \mexists{}d:Point. ((ab \mbot{} pa \mwedge{} Colinear(a;b;q)) \mwedge{} p-q-d)
By
Latex:
((InstConcl [\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THEN Auto) THEN (Unfold `geo-perp` 0 THENA Auto) THEN InstConcl [\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index