Nuprl Lemma : upper-dimension-axiom

g:EuclideanPlane. ∀a,b,c,x,y:Point.  (ax ≅ ay  bx ≅ by  cx ≅ cy   Colinear(a;b;c))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-sep: b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  geo-colinear: Colinear(a;b;c) cand: c∧ B and: P ∧ Q basic-geo-axioms: BasicGeometryAxioms(g) squash: T implies:  Q sq_stable: SqStable(P) member: t ∈ T euclidean-plane: EuclideanPlane all: x:A. B[x]
Lemmas referenced :  euclidean-plane_wf sq_stable__geo-axioms
Rules used in proof :  universeIsType productElimination imageElimination baseClosed imageMemberEquality sqequalRule independent_functionElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction rename thin setElimination sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.    (ax  \mcong{}  ay  {}\mRightarrow{}  bx  \mcong{}  by  {}\mRightarrow{}  cx  \mcong{}  cy  {}\mRightarrow{}  x  \#  y  {}\mRightarrow{}  Colinear(a;b;c))



Date html generated: 2019_10_30-AM-06_18_22
Last ObjectModification: 2019_10_29-PM-02_56_42

Theory : euclidean!plane!geometry


Home Index