Step
*
1
1
1
of Lemma
implies-isometry-lemma3
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. r : {r:ℝ| r0 < r}
4. ∀x,y:Point(rv). (x ≡ y
⇒ f x ≡ f y)
5. ∀x,y:Point(rv). (((||x - y|| = r) ∨ (||x - y|| = (r(2) * r)))
⇒ (||f x - f y|| = ||x - y||))
6. ∀x,y:Point(rv). ((||x - y|| = r)
⇒ (∀j:ℕ. f x + r(j)*y - x ≡ f x + r(j)*f y - f x))
7. n : ℕ+
8. m : ℕ+
9. x : Point(rv)
10. y : Point(rv)
11. ||x - y|| = (r(n) * r/r(m))
12. r0 < (r(n) * r)
13. (r(n) * r) = (r(m) * (r(n) * r/r(m)))
14. r0 < (r(n) * r/r(m))
⊢ ∃z:Point(rv). ((||z - x|| = (r(n) * r)) ∧ (||z - y|| = (r(n) * r)))
BY
{ (RWO "-2" 0 THENA Auto) }
1
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. r : {r:ℝ| r0 < r}
4. ∀x,y:Point(rv). (x ≡ y
⇒ f x ≡ f y)
5. ∀x,y:Point(rv). (((||x - y|| = r) ∨ (||x - y|| = (r(2) * r)))
⇒ (||f x - f y|| = ||x - y||))
6. ∀x,y:Point(rv). ((||x - y|| = r)
⇒ (∀j:ℕ. f x + r(j)*y - x ≡ f x + r(j)*f y - f x))
7. n : ℕ+
8. m : ℕ+
9. x : Point(rv)
10. y : Point(rv)
11. ||x - y|| = (r(n) * r/r(m))
12. r0 < (r(n) * r)
13. (r(n) * r) = (r(m) * (r(n) * r/r(m)))
14. r0 < (r(n) * r/r(m))
⊢ ∃z:Point(rv). ((||z - x|| = (r(m) * (r(n) * r/r(m)))) ∧ (||z - y|| = (r(m) * (r(n) * r/r(m)))))
Latex:
Latex:
1. rv : InnerProductSpace
2. f : Point(rv) {}\mrightarrow{} Point(rv)
3. r : \{r:\mBbbR{}| r0 < r\}
4. \mforall{}x,y:Point(rv). (x \mequiv{} y {}\mRightarrow{} f x \mequiv{} f y)
5. \mforall{}x,y:Point(rv). (((||x - y|| = r) \mvee{} (||x - y|| = (r(2) * r))) {}\mRightarrow{} (||f x - f y|| = ||x - y||))
6. \mforall{}x,y:Point(rv). ((||x - y|| = r) {}\mRightarrow{} (\mforall{}j:\mBbbN{}. f x + r(j)*y - x \mequiv{} f x + r(j)*f y - f x))
7. n : \mBbbN{}\msupplus{}
8. m : \mBbbN{}\msupplus{}
9. x : Point(rv)
10. y : Point(rv)
11. ||x - y|| = (r(n) * r/r(m))
12. r0 < (r(n) * r)
13. (r(n) * r) = (r(m) * (r(n) * r/r(m)))
14. r0 < (r(n) * r/r(m))
\mvdash{} \mexists{}z:Point(rv). ((||z - x|| = (r(n) * r)) \mwedge{} (||z - y|| = (r(n) * r)))
By
Latex:
(RWO "-2" 0 THENA Auto)
Home
Index